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To accelerate the analysis of a multi-element MRI coil, a two-way link is used between radiofrequency
(RF) circuit and 3-D electromagnetic (EM) simulation tools. In this configuration, only one 3-D EM sim-
ulation is required to investigate the coil performance over a range of different tunings, saving consider-
able computation time. For the purpose of 3-D EM simulation, the coil feed networks and trim capacitors
are substituted by 50 X ports. The entire coil was tuned in the RF circuit domain, and the near-field pro-
files of the electric and magnetic field components were then calculated, together with the specific
energy absorption ratio (SAR) maps in the 3-D EM domain

� 2009 Elsevier Inc. All rights reserved.
1. Introduction 3-D field profiles, which depend on the interaction between the
When magnetic fields of 7 T and higher are used for MRI, the
ensuing inhomogeneity of RF magnetic (B1) fields can be reduced
using specialized MRI coil designs. The most important of these
is multi-channel transmission [1,2]. However MRI coil analysis be-
comes very complicated in such a configuration, especially when
there is significant coupling between coil elements.

In earlier studies, [1,2] MRI RF coil analysis was performed
using 3-D electromagnetic (EM) tools based on finite element
methods (FEM), finite difference time domain methods (FDTD),
the method of moments (MOM) and some 3-D EM hybrid ap-
proaches. The current rapid development of novel 3-D EM tools
[3–5], as well as the significant improvement of those already
available, makes it difficult to predict which will be optimal for
MRI coil design in the near future. Selection of the tools can be
made on the basis of available computer hardware and human
body models. However, use of 3-D EM tools alone becomes a severe
limiting factor in the performance optimization of a multi-element
MRI coil when the human body model is included in the simulation
domain, because the full highly complex 3-D EM problem must be
solved for each tuning condition.

In most cases, a MRI coil is designed and simulated indepen-
dently of any supporting circuitry (e.g. feed, tuning, and decoupling
networks, etc.). In a typical 3-D EM simulation, only the radiative
coil elements are represented. When a set of idealized inputs are
entered, the E and B1 fields, and the SAR profiles, as well as the S
parameter matrix, can be simulated. It is common practice to use
the 3-D EM domain simulation results – the coil S parameter ma-
trix – in RF circuit analysis [6] but without feedback to the 3-D
EM domain. The weakness of this methodology is that the actual
ll rights reserved.
feed network and the coil, are not observable until the physical
hardware has been built. This is a less than ideal time for modifica-
tions to be made. Changes at this point can be costly and time
consuming.

One of the most significant developments in field solver tech-
nologies is the creation of a two-way link between RF circuit and
3-D EM simulation tools [7,8]. This enables simulation results from
the RF circuit domain to be used to drive the 3-D EM domain. The
two-way link is a built-in feature (with varying degrees of flexibil-
ity from MRI coil design point of view) in the RF simulation bun-
dles delivered by several vendors (e.g. Ansoft, CST, Agilent, etc.).
It is included mainly for the purposes of telecommunication anten-
na designers, who routinely use it for optimization of antenna ar-
ray 2-D far field performance. They adjust the parameters of feed
networks using RF circuit tools, followed by recalculation (based
on RF circuit simulation data) of the far field using the 3-D EM
tools.

3-D MRI RF coil design entails near-field simulation, and the coil
feed and tuning networks are often independent circuits. As a re-
sult, the two-way link approach requires 3-D EM simulation with
many more independent ports than are usual in telecommunica-
tion antenna development. It also entails the recalculation of 3-D
near-field data at many more points in space than 2-D far-field
data. Furthermore, the tuning network is not referenced to ground,
as it is for the feed network. For this reason, the tuning network
must be represented by differential ports, instead of the single-
ended ports representing the feed network for telecommunication
applications. It must be pointed out that all available vendor-pro-
vided implementations of this two-way link have some limitations,
such as maximum number of mesh elements, lengthy calculation
time, difficulty of handling differential ports, expensive licenses.
This inhibits the straightforward use of the two-way link for mul-
ti-port MRI coil analysis.
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Perhaps the absence of turn-key solutions compatible with MRI
coil design, with a realistic price, is the reason that the two-way
link has not been previously explored by MRI coil designers. In
our work, a flexible vendor-independent usage of the two-way link
allows optimization of the coil analysis workflow, with a simulta-
neous reduction of the cost of simulation tool licenses.

2. Method

The two-way link approach relies on the fact that for linear RF
networks and a given frequency w, the 3-D EM field data are ex-
actly the same in each of the following cases:(a) the RF network
is part of a 3-D EM model analyzed by 3-D EM tools; and (b) all
the RF networks with negligible mutual coupling are substituted
by 3-D EM ports with impedance Zj

portðxÞ (could be, for instance,
50 X), and with electromotive force (V jðxÞ) defined for each port
as

V jðxÞ ¼ IjðxÞ � Zj
portðxÞ � U j

networkðxÞ ð1Þ

where j is port index, U j
networkðxÞ is the network cross voltage and

IjðxÞ is the network output current. U j
networkðxÞ and IjðxÞ are calcu-

lated in the RF circuit domain, when the network is connected to
the corresponding port of an object described by S parameter ma-
trix, obtained by the 3-D EM model simulation.

A workflow diagram of the approach proposed is shown in
Fig. 1. After the layout of a coil has been completed using 3-D
EM tools, the coil is modified by substitution of all lumped ele-
ments required for tuning, feeding and/or decoupling with equiva-
lent ports with impedance of 50 X, the standard for MRI scanner
feed networks. 3-D EM simulation of this derived multiport design
provides Ej and Bj

1 field prototypes for each simulated port, assum-
ing that the port power amplitude Pj

prototype ¼ 1 W, with
uj

prototype ¼ 0 (in most EM tools), and also the multi-port S parame-
ter matrix. This matrix constitutes the source data for an S param-
eter simulation block enabling design of the RF circuit, together
Fig. 1. Workflow of the approach proposed. Solid line is used for operations and paths
operations and paths that can be executed repeatedly to obtain data corresponding to d
with other parts of scanner RF subsystem and the coil networks
of lumped elements for tuning, feeding and/or decoupling. Each
coil network is then connected to the corresponding ports of the
S parameter simulation block. For a specific tune and feed condi-
tion, the RF circuit tool calculates electrical values (resistance,
capacitance, inductance, cable length, etc.) of any unknown ele-
ments using an optimization procedure, followed by simulation
of the electrical properties of the circuit (current and voltage for
circuit nodes, S parameter, etc.). The current and voltage values
thus obtained for each S parameter simulation block node are used
for calculation of V jðxÞ according to Eq. (1). In most 3-D EM tools
the port excitation for combining the results of the multiport sim-
ulation is defined by power (Pj

portðxÞ) and phase (ujðxÞ) rather
than by V jðxÞ. We may write, in Matlab notation

Pj
portðxÞ ¼ jV

jðxÞ � conjðV jðxÞÞ=ð8 � Zj
portÞj=Pj

prototype ð2Þ

ujðxÞ ¼ phaseðV jðxÞÞ �uj
prototype ð3Þ

The procedure for combining results consists of linear superpo-
sition of Ej and Bj

1 weighted by the Pj
port and uj provided for each

port. This procedure may be executed outside of the EM tools envi-
ronment using external software such as Matlab. The coil E and B1

fields may then be written

B1 ¼
XN

j

Bj
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

portðxÞ
q

� expðiujðxÞÞ ð4Þ

E ¼
XN

j

Ej �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj

portðxÞ
q

� expðiujðxÞÞ ð5Þ

where N is the total number of ports.
As a result, the E and B1 field profiles for any tune/feed/decou-

pling condition can be calculated on the basis of only one 3-D EM
simulation, together with as many RF circuit analyses as required.
The 3-D EM computation is extremely time consuming, especially
when high spatial resolution is required, whilst the circuit simula-
that are executed only once for a coil design investigated, dotted line is used for
ifferent tune and feed conditions.
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tion is quite fast, because RF circuit analysis requires significantly
less computer resources than any 3-D EM simulation approach
which must deal with a precisely specified realistic human body
model. The computation time for the combined result procedure
Fig. 2. Rapid 7 T coil.
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is linearly dependent on the number of mesh elements and ports,
and is not significantly time consuming.

3. Results

The approach described above has been used as the basis for
investigation of the performance of a commercially available Rapid
Biomed (RAPID Biomedical GmbH, Technology Park Würzburg-
Rimpar, Germany) 7 T 8-element head coil [9] (Fig. 2). The coil
inner diameter is 235 mm, outer diameter is 310 mm, and the cou-
pling between neighboring elements Sxy � 7 dB.

In a bench experiment, the electrical properties (S parameter
matrixes) of all parts of the coil were measured using a network
analyser Agilent E5061A. The frequency (felem) at which the mag-
netic field for each element approaches its maximum was mea-
sured by connecting an RF source to the coil input and
monitoring the output of a shielded coaxial loop placed in the geo-
metrical centre of each element (S21 measurement setup). The fre-
quency at which each element’s reflection coefficient (Sxx)
approaches its minimum (fmin_Sxx) was measured by direct connec-
tion to each element input with simultaneous termination of other
elements by 50 X loads. In further work, MRI measurements of the
B1+ fields actually produced by this coil were performed using a
Siemens 7T scanner.

In numerical studies, Agilent ADS was used as the RF circuit
tool, CST Microwave Studio (CST) and Ansoft HFSS were each used
as 3-D EM tools, and Matlab was used in post-processing. The coil
3-D EM model includes all construction details for the resonance
elements, simulated with realistic dimensions and material electri-
cal properties. For each coil element, the RF feed network and trim
capacitor, which is on the opposite side to the element’s feed point,
were substituted with 50 X ports. This gave a total number of ports
as high as 16.

In the CST simulation the number of mesh cells was increased
manually, by changing the mesh resolution for the coil elements,
tune
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until there was no significant difference between the simulated
and experimental trim capacitor values obtained using the RF cir-
cuit simulation step. This condition was achieved with a 1 mm iso-
tropic mesh size, with a total of 57.2 million mesh nodes. By
contrast, HFSS simulation does not require manual adjustment of
the mesh size, because it includes a reliable multistep mesh adap-
tation algorithm, guided by simulation coverage criteria. The final
mesh attained using the HFSS simulation for the coil investigated
consisted of 2 million tetrahedra. Detailed analysis of the influence
of mesh size and mesh adaptation procedure in CST and HFSS on
co-simulation data will be published separately.

After the multi-port characterization was obtained by both 3-
D EM tools for 50 MHz frequency sweep, the trim capacitors
and RF feed networks were connected to these ports for model-
ling with Agilent ADS. The circuit presented on Fig. 3 includes
as in reality: one power source, the coaxial cable, the 8-channel
power splitter (with losses as measured for the real splitter but
partially idealized, assuming frequency-independent 50 X input
and output impedances), eight coaxial cable-based phase shift-
ers, and the coil itself. In additional eight wave probes were
used numerically to obtain transmitted and reflected power
for each coil element. The losses in the coaxial cable were set
Fig. 4. Sub-network for tune circuit.

Fig. 5. (top) Power reflected by each coil element (solid lines) and power reflected b
minimized at fres = 297.2 MHz, right, fmin_Sxx set to be equal to fres = 297.2 MHz.
equal to the measured losses between the scanner power refer-
ence plane and the coil splitter.

Most RF circuit tools support both S parameter and alternating
current (AC) signal simulations. Because the feed network of the
coil investigated is based on fixed capacitors, the Agilent ADS S
parameter optimization procedure was used to obtain only the
trim capacitor values for tuning conditions defined by the vendor,
which includes minimization of each element’s Sxx at the MRI res-
onance frequency of 297.2 MHz (fres) when a water based phantom
is placed inside the coil (e.g. all fmin_Sxx = fres). As with a bench
experiment, such optimization required reconfiguration of the ori-
ginal RF circuit. The power source and the splitter were removed
and an individual simulation port was connected to each input
phase shifter. Numerical tuning of the coil, with eight port simula-
tion and minimization of Sxx (where x varies from 1 to 8) at fres, re-
quired about 100 iterations for reliable trim capacitor value
definition. This number increased when the numerical value ob-
tained was far away from the experimental value used as a starting
point. This was the case for the first CST simulation with 2.5 mm
isotropic mesh size.

AC simulation and optimization allows evaluation and tuning of
the frequency dependence of the transmitted and reflected power,
and the current value in different locations, using the wave and the
current probes correspondently. The location of the current probe
for the tune circuit is shown in Fig. 4. Current probe data were used
for rapid estimation of felem, because the magnetic field generated
by each coil element is defined by the current through it. Values
of current flows in the coil through the feed network, and the cur-
rent through the trim capacitor, are important for understanding
coil performance, since a significant variation in current amplitude
along the coil explains why the B1+ profile is asymmetrical in both
coronal and sagittal planes.

With the tuning provided by the vendor – such that all
fmin_Sxx = fres, the ensuing large frequency shift between felem and fres

results in suboptimal coil performance, as shown in Fig. 5. Different
alternative tuning conditions were investigated. These were: (a) all
felem = fres; (b) Pref_coil approaches its minimum at fres; and some
y entire coil (dotted line). (bottom) current through trim capacitor. (left) Pref_coil



Fig. 6. B1+ maps of a saline phantom with permittivity equal to 79.5 and
conductivity equal to 0.46. Left simulation data, right experimental data mapped
experimentally by Insko’s double angle method [12].
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other tuning arrangements. The first tuning, obtained by an AC
optimization procedure, required that the maximum value of the
current through each tune capacitor approaches its maximum at
fres. The second tuning was obtained by AC minimization at fres of
the reflected power by the entire coil, derived as the sum of the re-
flected power from each coil element as obtained by the wave
probes.

Simulation data confirms that the coil’s magnetic field ap-
proaches a maximum when Pref_coil is minimized. By coil re-tuning,
Pref_coil at fres was reduced from more than 43% of transmitted
power to less than 11%, with simultaneous increases of as much
as 33% for B1+. The fixed values of the coil feed network capacitors
made it impossible to obtain smaller levels of Pref_coil. By numerical
adjustment of the feed network capacitors, Pref_coil could be mini-
mized further, until less than 0.4% of transmitted power.

For the two tuning arrangements tested – vendor-provided, and
Pref_coil minimized at fres – and two coil loads – saline- and oil-based
phantoms – the RF circuit simulation results (S parameter matrix,
element-specific Q factors, felem’s) and 3-D EM simulation results
(B1+ profile) were both found to be almost equal to the correspond-
ing observed data for the RF coil. Simulated and measured B1+ pro-
files are shown in Fig. 6. Since the simulated B1+ data is based on
the complete scanner RF subsystem, from power reference plane
to coil radiative element, the results can be quantitatively com-
pared [1], not only for the shape of the B1+ profile, but also the vol-
ume performance of the MRI coil, defined as the ratio of the RF field
magnitude at any given point to the RF voltage applied at the scan-
ner reference plane. The close agreement between simulated and
measured MRI coil volume performance, obtained when the coil
was loaded by several phantoms with different size and electrical
properties, was limited only by uncertainties in the geometrical
and electrical properties provided by the vendors for the MRI scan-
ner RF drive train and the coil, as well as by uncertainties of phan-
tom electrical properties and phantom position inside the coil.

Analysis of the RF amplitude and phase for each substituted
feed network port showed that amplitude values and the phase
distribution vary significantly from what would be expected in
the ideal case (Table 1). This underlines the importance of inclu-
sion of the power splitter and phase shifters in the analysis of
3-D field and SAR data.
Table 1
Power amplitude and phase for each coil input after port substitution by the feed
capacitor network, when loaded by a phantom or HUGO. The ‘‘ideal case” represents
the value if the influence of the feed network is neglected.

Coil element 1 2 3 4 5 6 7 8

Amplitude (W) Phantom 0.87 0.82 0.87 1 0.87 0.82 0.87 1
HUGO 0.97 0.81 0.77 0.88 0.86 0.92 0.94 1
Ideal case 1 1 1 1 1 1 1 1

Phase (�) Phantom 2 49 101 141 2 49 101 141
HUGO 4 49 100 137 0 49 96 137
Ideal case 0 45 90 135 0 45 90 135
Since the coil investigated cannot be easily retuned when in-
stalled at an MRI scanner, its in vivo performance was analyzed
using mesh definition and trim capacitor values borrowed from
the study of the water-based phantom. To change the simulation
object from the phantom to a head model corresponds to experi-
mental substitution of the phantom by an in vivo subject inside
the tuned-and-matched MRI coil. The Ansoft human body and
HUGO models (each with a range of different scaling factors: 1,
0.9, 0.8) and also all models of the ‘‘Virtual Family” data set [10]
were used. The voxel-based HUGO and ‘‘Virtual Family” models
were used only in CST simulations because HFSS cannot handle
the voxel-based model format.

The two-way link enables one 3-D EM simulation to be suffi-
cient for investigation of the SAR behaviour, for each human body
model used, and a range of tuning and feeding conditions that in-
cludes transmit array excitation. SAR profiles for the ‘‘Ella” and
‘‘Billie” models from the ‘‘Virtual Family” are presented in Fig. 7.
A detailed report of SAR worst case analysis based on these re-
search data will be published separately.

3-D EM simulation times were about 32 days for CST (with the
final mesh) and 2 days for HFSS, when a single high-end PC desktop
computer was used. If port simulation parallelization is used in
CST, or frequency sweep point simulation parallelization is used
in HFSS, the corresponding simulation time will be reduced line-
arly, proportional to the number of computers used for paralleliza-
tion. For the final mesh condition, numerical tuning would have
been completely unfeasible using only the 3-D EM tools. Using
the two-way link approach, tuning itself was performed within
minutes in Agilent ADS.
Fig. 7. Ten gram SAR. Top ‘‘Ella”, bottom ‘‘Billie” models of ‘‘Virtual Family” human
body data set. Left, Pref_coil minimized at fres, right, fmin_Sxx set to be equal to fres. Max
SAR value for ‘‘Ella” – 1.71 W/kg, for ‘‘Billie” – 2.70 W/kg. Colour scale of left and
right plots are the same. Transmit power is 8 W.
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The tuning-guided recalculation of both E and B1 field data, fol-
lowed by data saving to dedicated files, took about 25 min for a
57.2 million mesh CST project. This time was mostly devoted to
reading and writing field data files larger than 1 GB. The HFSS
post-processing workflow does not require production of internal
separate field data files for specific individual port amplitude and
phase conditions. Any field based calculations or export to an
ASCII-based file are performed by the HFSS field calculator ‘‘on-
the-fly” using the actual port conditions provided by the user.
The exported HFSS data were used for performing SAR calculations
in Matlab.

4. Discussion

The concept of introducing ports at the locations of lumped ele-
ment networks during 3-D EM simulation has more general appli-
cation in high field MRI coil design. For instance, there are no
analytical expressions to estimate the capacitance values of dis-
tributed capacitors, as commonly used in birdcage coils and the
decoupling networks of multi-channel coils. While these values
can be estimated in principle by optimization with the 3-D EM
simulator [11], they can be computed much more rapidly by co-
simulation, when the two-way link is used with a 3-D EM simula-
tor for which the simulation time is not significantly dependent on
the number of simulated ports (as it is true for Ansoft HFSS).

For most commercial 3-D EM tools, it should be noted that sub-
stitution of an RF network by a lumped 3-D EM port which is not a
true differential port imposes constraints on the behavior of the S
parameter objects of the RF circuit with differential ports. The
incoming current through the plus terminals must be the same
as the current leaving through the minus terminals. This is true
for most tuning and feeding networks used for MRI coil design.

For the frequency range used in MRI (below 500 MHz), the
important initial assumption of negligible mutual coupling be-
tween each substituted network is not an issue, when the distrib-
uted and trim capacitors are physically small and separated by
distances many times longer than their largest dimension. For
some MRI coil designs, capacitive coupling between feed networks
might be apparently significant, but since this issue is important
for the MRI coil operation itself, reliable solutions are normally
used in which such coupling is cancelled, using appropriate con-
nections between feed network and radiative coil element (for in-
stance, using cable traps, etc.). This allows simulation of the feed
network as described above.

This approach was validated by performing a number of simu-
lations for the coil analyzed where the feed and tune networks
were not substituted by ports. The results of these simulations
for the optimized feed and tune capacitor values were exactly
the same as for the corresponding port substitution simulations.
The maximum difference of B1+ and SAR 3-D data between these
simulations was less than 0.5%.

MRI safety guidelines define a maximum allowable SAR for
in vivo MRI scanning, and a coil factor (K) – the ratio of SAR to ab-
sorbed coil power (Pabsorbed) – which is used for computing the SAR
during an MRI scan. Scanner software can estimate Pabsorbed only
from real-time measurements of transmitted (Ptransmit) and re-
flected (Preflect) power data obtained at the scanner’s RF power ref-
erence plane, together with losses measured previously between
the scanner power reference plane and the coil input.

When a multi-element coil is driven using power splitters that
absorb the power reflected by the coil (i.e. Preflect � 0) which is the
case for the Rapid 7 T coil, SAR safety monitoring becomes more
complex, because the correct Pabsorbed cannot be obtained in real-
time. SAR safety monitoring that takes into account K and only
Ptransmit overestimates SAR, a significant drawback for MRI scanner
performance.

When simulation is sufficiently precise to give no visible differ-
ence between the measured and simulated data in both simulation
domains, use of SAR to Ptransmit ratio is reliable enough to guarantee
SAR safety monitoring, since the behaviour of the entire RF MRI
scanner subsystem, from power reference plane to coil, is thus
demonstrated to be properly understood.

Using simulations with different human models, multi-element
coil tuning can be pre-adjusted to provide the best possible perfor-
mance for a given head mass and shape distribution without retun-
ing for every subject. This somewhat complex optimization
procedure can be implemented in Matlab, for instance.

5. Conclusions

Despite the fact that computer power and memory have in-
creased significantly over the last few years, the available 3-D EM
tools still do not allow treatment of complete design problems that
include complex RF sub-circuits (RF cable, power splitter, phase shif-
ter, etc.), and they are far from optimal for performance optimization
of a coil with adjustable lumped elements and a complex load.

The two-way link-based RF circuit and 3-D EM co-simulation
method offers a reliable and fast workflow for multi-element coil
analysis with a human model as load. Designers can then not only
simulate both the feed network and the MRI coil as a single system,
but also obtain 3-D EM field data and SAR for different feed/tuning
conditions without rerunning the very time consuming 3-D
simulation.

Vendor-independent usage of the two-way link allows use of
only one RF tool with several different 3-D EM tools, achieving
desirable flexibility of analysis workflow with a simultaneous
reduction of the cost of simulation tool licenses.
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